
IF.EE  -.-R,+>  S,+C1  IONS os AL  1 o\l,Al [C COW KOI

Technical Notes and Correspondence__

On the Rank Nlinimization  Problem Over a Positive
Semidefinite  Linear  JIatrix Inequality

M. Mesbahi  and G. P. Papavassilopoulos

Abstract—  W’e consider the problem of minimizing the rank of a
positive semidefinite matrix, subject to the constraint that an affine
transformation of it is also positive semidefirrite. Our method for solving
this problem employs ideas from the ordered linear  complementarily
theorv  and the notion of the least element in a ~ector lattice. This problem
is Of”imwrtance in many contexts. for example in feedback synthesis
problems: such an example is also provided.

Jndex Ternrs-Feedback  synthesis, least element theor~, linear matrix
inequalities, rank minimization problem.

I. INTRODtiCTIOS

The analogies between the cone of positive semidefirrite matrices
and tbe positive orthant in the Euclidean space have been the
focus of many interesting investigations in matrix theory over the
years. Recently, these analogies have been quite useful in devising
efficient algorithms for the eigenvrdue optimization problems, and
more generally, for the semidefinite programming (SDP) and the
linear matrix inequality (LM1)  problems [1], [3]. These analogies can
in fact be made more explicit by associating to a positive semidefinite
matrix its vector of eigenvalues, arranged in a nondecreasing order.
Through this association. many properties and questions about a
positive semidefinite matrix can be “translated,” almost mechanically,
in terms of the attributes of the corresponding: nonnegative vector
of eigenvalues. For example, the rank of a matrix can be viewed in
terms of thecardinality  of the supporT  set of the vector ofeigerivalues
(counting multiplicities), the latter being the set of indexes for which
the vector has a nonz.ero component.

In this paper, we explore the possibility of using the analogy
between the rank of a positive semidefinite matrix and the cordiality
of the support set of the associated vector of eigenvalues to solve an
important problernwhich  has found many applicationsin  system and
control theory. The problem is that of minimizing the rank of a matrix.
subject to the constraint that the matrix and an affine transformation
of it are positive semidefinite. This problem will be referred to as the
MIX-RANK problem and is stated as follows:

rllin rank .\- (1)

subject to: Q -t .11( .1-, ~ 0 (~)

-1- + (),— (3)

In ( 1 H 3). -U is a symmetry preserving linear map on the space
of symnletric matrices, Q is a symmetric matrix (Of appropriate
dimensions). and the ordering ‘“>’” is to be interpreted in the sense
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of Lowner.  i.e.. .-t > B if and only if .-t – B is positive semidefirrite;
similarly, .4 > B indicates that .4 – B is positive-definite.

The YIIN--RAXK problem ha> vanouf applications In control and
system theory. For example, the bilineti  matrix inequality problem
(BJMI) can be shown to be closely related to tbe MIX-RANK
problem [8], [1 l]. The BM[, on the other hand. has been shown
by Safonov er u/. [IO] to be a unifying formulation for a wide array
of control synthesis problems, including the fixed-order Hs control.
j//k,,,-synthcsis. decentralized control. robust gain-scheduling, and
simultaneous stabilization. Similarly in [5]. El Ghaoui and Gahinet
have show n that the important problems of static output feedback
stabilization. dynamic reduced-order output-feedback stabilization.
reduced-order H xsvnthesis,  and p-synthesis with constant scaling

can be formulated as a rank minimization under an LMI constraint,
clearly an instance of the LMIN-RANK  problem.

Coming back to the MIN-RANK  problem and using our “’dictio-
nary,” the associated problem in the Euclidean space would be the
problem of minimizing the cardinality of the support set of a vector,
subject to the constraint that tbe vector and an affine transformation
of it have nonnegative components, i.e.,

min Isupport rl (4)

subject to : q + H.r ~ O (5)

1>0— (6)

where H is an n x n matrix, g is an n x 1 vector. and Isupport  .rI
denotes the cardinality of the support set of the vector r (counting
tnultiplicities). Problem (4}(6) shall be referred to as the hflN-SUPP
problem. Let .1 denote the feasible set of the YIIX-SUPP  problem,
i.e.,

.\:= {.r20:q+H120}. (7)

One way of solving this problem is to start checking for the existence
of a particular support configuration in .1. For example. to see whether
a vector with cardinality one exists in .1. one can examine the
positivity of a column of H. Similarly, to check whether a vector with
a support cardinality k exists in .i, the consistency of tbe following
system of linear inequalities can be examined:

.r,, h,l+. .+~, kh, k ?–q (8)

r,, >O ~j=l....~.! (9)

where hl is the /th column of the motrik  H and (ii. . . ik ) is some
k combination of the ~, indexes. comesponding ;O the n columns of
H. Hence. checking for the existence of a ,olution with a support

‘,; k! J{ – k ! systemscardinality k amount> to solving ~t most i~.
of linear inequalities. Therefore. the MI N-SUPP problem can in
principle be solved via ?“ linear programs. El identl}, this approach
for solving the VIN-SUPP problem is not quite acceptable. However.
it should be noted that checking for the existence of a solution with
a particular support cardinality can be done efficient>. For e~ample.
the easiest case is to examine the existence of a vector in .1 with a
support cardinality one. which amounts to simply checking for the
existence of a positive column in 11.

A special case of the NIIN-SUPP  problem which can be solved
efficiently is the case where the matrix H in (5J is a Z matrix. A
square matrix is a Z matrix when all of its off-diagonal elements are
nonpositive. When H is a Z matri~. the set .1 (7) has an element
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whose every component is less than or equal to the corresponding
component of every other element in .1. ‘This s~called  least element
of .1 has to have the minimum support in .~, since if it does not,
then it has a positive component which majonzes the corresponding
zero component of some other vector in .~ that contradicts its least
element property. To summarize, a set T ~ R“ has a least element r
when .r E T. and for all u E T. r < u (the inequality is interpreted
cornponentwise).  Moreover, if r is the least element of a subset of
the positive orthant, it has the minimum support cardinality in that
subset as well. Consequently, when H is a Z matrix, one can replace
~he task of minimizing the cardinality of the support set of the vector
satisfying (5), (6) by finding the least element of .~.

The notion of the least element is not restricted to polyhedral sets
like .~ ~ R“. In fact. to study sets with the least element property,
one merely has to have a Hi/bert lattice, i.e., a Hilbert space ‘H,
a pointed convex cone which induces an ordering “>” on M, and
an in fimum operation, “iuf,” with respect to the ordering >: given
.r. v E H. = := inf{z. .Y} is such that c < .r. : < y, and for all
u < ~ and u < ,y. u, < c, This in effect means that inf{r. y} is the
greatest lower bound of the set {T. v } with respect to the ordering
~. It can be seen easily that for vectors r and y in R“, with the
componentwise ordering, if we let :, = rnin{r,.  y,}(i = 1 . . . . n),
then ; = inf{.r.  g}. The least element theory in the case of vector
inequalities relies on the important observation that when H is a Z
matrix, the set .i is closed with respect to the inf operation, i.e., if
z. y E .\, then inf {z. y} E A. In this cm.e the set A is called a meet
sernilatfice, since the operation inf is exactly the operation of taking
the meet of two vectors [4]. Having a meet semilattice structure for
.1, and noting that .1 is bounded from below (by the vector O) and it
is closed, one can actually find the least element of .1 efficiently via
a linear program. Thereby, when H is a Z matrix in the MIN-SUPP
problem (4)-(6), the minimum support element can be found by a
linear program.

There are certain issues that arise pertaining to our comparison
between the MIN-RANK  and the MIN-SUPP  problems. To what
extent can the result regarding the MIN-SUPP  problem with a Z
matrix be generalized for the MlN-RANK  problem? What is the
analogue of the Z matrix, the least element, and the meet semilattice
property for problems defined over the space of symmetric matrices?
Can one solve certain classes of the MIN-RANK  problem via an SDP
(a linear program over the cone of positive semidetinite matsices)?

In this paper, we try to generalize certain aspects of the theory
of Z matrices to address the problem pertaining to the minimum
rank element of the set defined by (2), (3). The outline of the
paper is as follows. In Section 11, we provide some definitions and
properties which allow us to motivate, and subsequently introduce,
the generalization of the meet semilattice and the Z matrices (Section
11-.+). In Section II-B, we use these generalizations to show that a
special class of MIN-RANK  problems can be solved by a convex
program. Finally, a control example is provided, and a few remarks
then conclude the paper.

A few words on the notation are necessary. 7“’ and A(T) denote
the transpose and an eigenvalue of the matrix T, respectively. The
space of 7L x n real matrices is denoted by R“ x”, its symmetric
subset by SRn x”, its positive semidetinite subset by .SRJxn, and
its identity matrix by In.  Finally, the inner product of two square
matrices .-1 and B in SR” ‘n is denoted by .-l ● B, which is equal
to the trace of the product AB.

11. T HE MIN-RANK  PROBLEM

Consider again the MI N-RANK problem ( 1 ● <3) with the Lowner
ordering “> .“ Two very useful properties of the Lowner  ordering are
as follows [6].

G i v e n  s y m m e t r i c  n x n matrices .-l and B, for any n x n
matrix T

.-1 ~ B s T’.4T  ~ T’BT.

If .4 ~ B, then A,(A)  > A,(B) (i = l.. . .. n).  where the
eigenvalues /\,’s  of both matrices .-1 and B are arranged in the
nondecreasing  order.

One should note that the implication (2) does not hold in the reverse
direction. For example, the matrices

()-4= 2 1 ()3 0
12 and B =

0 1

have the same set of eigenvalues. but neither .-i > B nor B ~ A.
Let 1{ : SRnx’ ~ SRnxn. Q c SR”xn,  and define

r := {.\” >0: Q-+ .U(.l-)  > o } (lo)

to be the femible set of the M[N-RANK  problem (1 ~3).
As mentioned at the end of the previous section, we now consider

the possibility of using ideas from the least element theory and Z
matrices to approach the problem of determining the minimal rank
matrix of the set r ( 10). The main obstacle in this avenue is that
the LOwner  ordering cannot be used to introduce a lattice structure
on the space of symmetric matrices. Given two symmetric matrices
A and B, the inf operation that yields the matrix C := inf{.4.  B}
cannot be defined such that C < A. C’ < B, and the implication

D~.4.D~B+D~C (11)

holds in general. In particular, the matrix inf {.-l. B} and an arbitrary
matrix D such that D s -4 and D ~ B do not have 10 be even
comparable. Hence, any attempt to define a greatest lower bound (in
the sense of Lowner)  for a set of symmetric matrices which parallels
the vector case (with componentwise ordering) runs into difficulty.

Fortunately, there is a remedy for this problem. Ando [2] realized
that for a given pair of symmetric positive semidefinite matrices,
although the set

A(.4. B) := {.1 c .SR”xr’ :0 <-Y <-4. Of-X_  <B}

does not possess a maximal point, it has in a sense “many maximal
elements.”

The set of the maximal points of A ( .4. B), which shall be denoted
by A, UP(.-l. B), has the following property:

VD c A(.4. B).3Z E -I.., (.4. B) :

ZEA(.4. B). DyZ:

& ETI”  E L(.-l.  B) :11- # z: Ii- > z. (]2)

The matrix Z E J, UP(.-l.  B‘ that satisfies ( 12) not only depends on
the matrices .4 and B, but also on the specific matrix D.

In [2], a complete characterization of the maximal points of the set
3(.4. B), along with an algorithm for their computation, is provided.
More explicitly, in [2] the set AS. P(.-I.  B) is parameterized by a
subspace .\- C range(  .-l) n range(B) and an nz-by-n 1 matrix
1; such that 1{” 1; < 1.,, where n 1 (respectively, 712) is the
number of positive (respectively. negative) eigenvalues of the matrix
[.\-]A - [.ilE with multiplicity counted; the notation [.\”]A denotes
the short of the matrix .4 to the subspace .\- [2]. Moreover, given
a matrix D E J(.-l. B). a matrix Z E &.p(.-l. B) satisfying (12)
is constructed as

Z = ;{[.\~.4+  [.\~B  – Ll,L-l([.\lB – [,\~.4)L-llL}  ( 1 3 )

where L := ([.\~.-l + [.\-](B) – 2D)1’2. L–l is the inverse of L
restricted to the range of [.\l..l – [.\l B and 1.4 I denotes the positive
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square  root of the matrix  .4J. For more details on this construction
and.  lnpar-riculw, ther~ason  fortheexistence  of the restricted inverse
of L.thereader  isreferredro [2, p. 5. lines  15–16; p. 10, lines 5–7].

Analogous to the case of tie componentwise  ordering for vectors,
we detitte the following generalization of a (meet semi-) lattice,

De@ition II.1: Aset~<  S R;Xn iscalleda(rneet  semi-) hyper-

lattice if forallpairs.l- andl-in  rthereexists z~~(.k-.  }”) such
that Z G r.

In the next section. we demonstrate that for an important class of
Iinearmaps.1[ andarregarive  semidejinire matrix Q,thesetr(l O)
is in fact a (meet semi-) hyper-lattice. In the spirit of the Z matrix
theory, we then proceed to demonstrate that having a (meet semi-
) hyper-lattice, the minimal rank element can in fact be found via
cotruex optimization.

A note on the terminology is necessary before we start our main
discussion. Following Alizadeh  [1]. a constraint optimization problem
is called an SDP, if its variables are either (symmetric) matrices
or scalar valued. the objective is a linear functional on the product
space of the spaces of the variables, and the constraint set is defined
by linewequalities  orinequalities  (either componentwise  or Lowner
ordering).

A. When isthe Setra(Meet Semi-) Hyper-Lattice?

In this section we show that when the linear map M in the
definition of the set 1 (10) has a particular form, and the matrix
Q is negative sernidefinite, the resulting r (10) is a (meet semi-)
hyper-lattice. For this purpose, we consider a generalization of the
Z matrices.

Definition II.2: A symmetric preserving linear  map  Jf : SR”xn
~ SRnx”  is of type Z if itcanbe represented as

‘=  1

(14)

for some matrices .11,  c R“ x n (1 < i < k) and integer k >1. A
control problem which can be formulated as a MI N-RANK problem
with a type Z linear map is considered in Section 111.

The main result of this section is now stated.
Lemma II. 1: Let the linear map M in the definition of the set r

( 10) be of type Z and the matrix Q be negative semidefinite. Then
the set r is a (meet semi-) hyper-lattice.

F’roofi  We would  like to show that for two symmetric matrices
.4 and B in r, there exists Z c 3(.4. B) such that Z E r.

We first note that the set A (.1.  B) is compact. It suffices to show
that for some Z c A(.4.  B)

.2> -Q + ~ M,Z.U’ ,,
,= 1

Since Z < .1 and Z < l?. one has

and

As a result of the assumption .-1. 1? E r, one concludes that

and

for all Z c A(A. B) (recall that Q is assumed to be negative
semidetinite). Hence for all Z c 3(.4. B).  ( –Q + ~, .lf,Z.11~ ) E
J(.4. B).

In particular, for all Z E J(A. B). there exists >“ E J,. P(.4. ~)
such that

1“ > –Q+ ~ .ll, Z.11: (15)

by the definition of the set &uP(.-l.  -B). Letg : 3(.4. B) – 3(.4. B)
be the point-to-set map such that

The map g is upper semicontinuous.  To see this. let {Zk }~21 and
{1~ }k21 be a sequence of matrices such that

The map -M is linear on SR”  x” x SRr’ x n and is therefore contin-
uous. Since the cone of positive semidetinite matrices is closed

O < /in~.lJ(Z~.11) = .II(Z”. }-*)
.-

and therefore

hence Y“ E g(Z”).
Since g is upper semicontinuous on the convex set 4(A. B), it

has a fixed point via the Kakutani’s Fixed Point theorem [7]. That is,
there exists a matrix Z 6 A(.-l. 1?) such that Z > –Q+~, JYf,ZJf~.
Hence, 1 is indeed a (meet semi-) hyper-lattice.

B. Finding a Minimal Rank Marrix in a (Meet Semi-) Hyper-bttice

We now consider the problem of finding the minimal rank matrix
of the set r defined by

{
r  : =  .Y- >0. Q+ .X- - ~.lft.l-.}I: >0

* 1 (17)

with Q < 0. As v.,e discussed in the previous section. the set 1’
is a (meet semi-) hyper-!attice  (Definition 11.1). We shall assume
subsequently that r is nonempty.

The following theorem provides us with an algorithm for finding
a minimal rank matrix of the set I’ (17).

Theorem /1.2: A minimal rank element of r can be found by a
semidefinite program.

Proof  Consider tho following semidefinite  program:

ruin 1 ● .\- (18)

subject to: Q + .\- – ~ .l~,.l-.l~~  > 0 (19)

.k- ~ o. (20)

Since r is assumed to be nonempty. let .4 E I_ ( 17) (such a matrix
can be found be a semidefini[e  program itself). Now consider instead
the problem

-Y>o—
l*.I- <1*.4.

(23)

(24)
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It should be clear that the optimum of both SDP’S, (18)--(20) and
(2 1)+24).  are the same. The latter SDP has an optimum since
I_ ~ {.1 : 1 ● .Y < 1 ● .1} is a compact set, and 1 ● .Y is a linear
functional in .1-. Let .~- be the optimal solution of ( 18>(20). We now
claim that .~- is of minimal rank in r. To show this, let Y E r and
Z E J(.~-. }-), such that Z E r (this is possible since r (17) is a
~ meet semi-) hyper-lattice). By the optimality  of .~

t

On the other hand. since Z G A(.i. l’), one has

(25)

A,(Z) <Az(.i-)  (i== l, . . ..7t) (26)

and

A,(Z) < A,(}”)  (i= l . . . ..rr). (27)

In view of (25), (26) implies that J,(Z) = ~,(.~) (i = 1 . . . . .?~).
Thu\  b> (27). for an arbitrag  matrix }- c r

A,(i) < A,(}’) (i = I.. . ..n). (28)

Suppose now that -~ is not of minimal rank in r. Then there exists ~
such that ~,(~-)  = O and ~,(.~-) # O for some index i. Since .x ~ O.
~,(-~” ) >0, which violates (28). Hence -~ is of minimal rank in r.

D

111. FIXED-ORDER OLTTWT FEEDBACK PROBLEM

Let Y be a continuous-time linear time-invariant dynamical system
-r.
4. .i=.-ll-+flu (29)

y=cr (30)

with matrix .-l E R“ ‘n (and all other matrices of appropriate
dimensions).

Suppose that it is desired to design a stabilizing controller of order
k for E

:‘=.JIA’:+l?Ky (31)
~ = C~.z+DKy (32)

where .4K E Rkxk. We would like to check, for a given k, whether
such a controller (of fixed order) exists.

In [5], El Ghaoui and Gahinet show that this important problem in
control theory can be reduced to a MIN-RANK problem.

Theorem ///. 2 [5]:  There exists a stabilizing dynamic output feed-
back law of order k for E if and only if there exis~ rnatices  R and
S and scalar - > 0 such that

.4R + R.i’ < BB’ (33)

.4’. s + S.4 + C“c (34)

and

Let

‘~-= (-;: -2)

(35)

(36)

It can be shown that the above problem can be reduced to solving
the following instance of the MIti-RANK  problem [9]:

min rank X (37)

subject to: .~.Y.~’ – .\- < Q-, (38)

.X” E L (39)

-k- % o— (40)

for an appropriate choice of the matrices .~ and (symmernc)  Q.
which is affine in 7: moreover, the set C is defined as

{ () }.C:= -X- E SR2’X2” :-X-=  “ 1 : C.V GSR”xnI \,-

The subset C can, for example, be defined by a set of linear equalities
of the form ~ E,, ● -Y = 1, where E,, is a matrix whose errtries are
all zero, exc~pt the ijth entry which is one (this fixes the ijth entry
of the matrix -Y to one).

Let us rewrite the above problem for c > 0 as

n+in rank .1- (41)-,

subject to: (Ql  – c1) + .Y – .~.l-.~’ ~ O (42)

-1- E L (43)

.\- + o.— (44)

We now realize that the above problem is exactly a MIN-RANK
problem with a linear map of type 2, except that the solution has
to be found in the affine set L. This additional constraint does not
introduce a difficulty for the applicability of the approach described
earlier, provided that the restriction of the set r (10) with the linear
map

M(.1-) := 1- – .Lk-.-i’

to L (if nonempty) is a (meet semi-) hyper-lattice (refer to [9] and
[2, pp. *1O]).  Assuming that this is in fact the case, in order to solve
this instance of the MIN-RANK  problem arising from the fixed-order
output feedback synthesis, one thus solves the following semidefinite
program for an appropriate choice of c > 0:

m i n  I ● -1-
.V.  -r

(45)

subject to: (Q. – (1) + -X” – .~.k-.~’ ~ O (46)

l-E.c (47)

A->o— (48)

?>0. (49)

The constraint that Q1 – CI < 0 can be added as an additional
constraint to the above semidefinite program (note that in the case
where c > 0 has to be chosen very large, the rank of an optimal
solution of the above SDP might only provide us with an upper bound
on the minimal rank solution). The above approach consequently
results in an efficient way that can be used to study the fixed-order
output feedback synthesis problem for the continuous-time linear
time-invariant systems.

IV. CONCLUDING REMARKS

In this paper, we have described an approach for sol~,ing the
problem of minimizing the rank of a positive semidefinite matrix,
subject to the constraint that an affine transformation of it is also
positive semidefinite. In this direction. an approach analogous to
tinding the least element of a meet semilattice, with componentwise
ordering for vectors, is developed. However, our analysis uses some
additional ideas and concepts since the positive semidefinite ordering
cannot be used to introduce a Iattice structure on the space of
symmetric matrices. The applicability of our results to the fixed-order
output feedback synthesis problem is also provided; this application
also reinforces the usefulness of exploiting the structure of the
nonconvex optimization problems an sing in control theory.
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